If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3u^2+5=17.
We move all terms to the left:
2/3u^2+5-(17.)=0
Domain of the equation: 3u^2!=0We add all the numbers together, and all the variables
u^2!=0/3
u^2!=√0
u!=0
u∈R
2/3u^2+5-17=0
We add all the numbers together, and all the variables
2/3u^2-12=0
We multiply all the terms by the denominator
-12*3u^2+2=0
Wy multiply elements
-36u^2+2=0
a = -36; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-36)·2
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*-36}=\frac{0-12\sqrt{2}}{-72} =-\frac{12\sqrt{2}}{-72} =-\frac{\sqrt{2}}{-6} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*-36}=\frac{0+12\sqrt{2}}{-72} =\frac{12\sqrt{2}}{-72} =\frac{\sqrt{2}}{-6} $
| 5x+13+10x+2=180 | | 70/100=b/10 | | 1/2x-11=-21 | | 5²+x²=7² | | 10=8u–7u | | 7n-3/10=n-3/2 | | 4j+3=12j+35 | | −4x−3=17 | | 3x+2(x-2)=-5 | | 10x+8=8x—(-16)= | | -3(-3-6f)=-2(-9f-3) | | 85/m=52/20 | | 7x-40=4.8+26 | | -8w-56=8w-40 | | 33+7x=5(6x+3)-5 | | 6/10=a/100 | | 2a-9=2a=5 | | -29(8x+34)=170+40x | | 8(x-6)=22-6x | | 34+4x+30=180 | | 3(x-4)-1=5x-2(5+x) | | 50x=4+x | | 45+20x=0.36x | | 10.4x+53.02=-9.6x+51.92 | | 14x=14/56 | | 3+2.7x=9.63.2x | | -29(8x+34=-170+40x | | (x)/(4)-(1)/(2)=(x)/(2)+1 | | 14=x/3=10 | | n5=16 | | 17=3x–7 | | x^+x=102 |